트위터에 재미있는 문제와 답이 올라왔었다.

컵라면 뚜껑을 몇 도로 접으면 가장 부피가 클 것인가...


식과 풀이는 틀린 데가 없지만, 그래도 이걸 Wolfram Alpha에 집어넣으면 어떻게 나오나 봤다.


참고로, 쿼리에는 아래와 같이 적으면 된다.


V(θ) = pi/3*((2*pi-2θ)/(2*pi)*r)^2*sqrt(1-(((2*pi)-2θ)/(2*pi))^2)*r


위의 풀이에 나와있는 식을 그대로 입력하면 아래와 같이 정리해준다.



그리고, 아래와 같이 자동으로 최대값을 구해준다.



r \neq 0이므로 \theta = \pi - \sqrt { \over 2 3 } \pi일 때 부피의 최대값은V _{max} = \over {2 \pi r^3} {9 \sqrt{3}}가 나온다.

그리고, 라디안으로 나온 값을 도 단위로 바꾸면 아래와 같은 결과를 보여준다.



트위터에 올라온 내용대로 약 33.03도일 때 가장 부피가 크다는 것을 확인할 수 있다.



신고

+ Recent posts